
Project 9 - �
Smarter Testing of

Evolving Software Systems

Leon Moonen, Thomas Rolfsnes,
Stefano Di Alesio, Razieh Behjati

Overview

§  (short) project direction
§  project status
§  overview of plans for 2016

�
Test Recommendations based on

Evolutionary Coupling
§  frequent pattern mining on development metadata

(e.g. in versioning and issue mgnt. systems)
–  two files that frequently change together have a dependency
–  if one is changed, impact/regression of other should be tested
–  “other customers that watched X, also enjoyed Y”

recommendation
engine

historical
data

changed files recommendations

Project 9 Status (1/2)
§  HaRT: History Based Recommendations for Testing

–  initial prototype delivered earlier in 2015 (demo March UPW)
–  Carl (KM) uses this prototype in current testing efforts

§  started generalization to CSC context
–  made core recommendation engine independent of partner

§  adapters to git versioning system (CSC) and track (KM)
–  analyzed bug/issue linking in CSC versioning data

§  original hypothesis: multiple changes/commits that address the
same issue should be seen as one large combined transaction

⚡  for project analyzed, only 14% of commits linked to bugs/issues
§  dependent on project culture; CSC also has 100% linked projects

–  no problem to make recommendation w/o linking changes
Ø needs qualitative evaluation (and gold standard)

Project 9 Status (2/2)
§  evaluated using ‘re-enactment’:

–  try to complete known commits based on partial commit
Ø  identified major shortcoming of state-of-the-art mining algo (Rose)

§  only produces results in ~25% of cases for KM and CSC
§  much lower for linux, httpd (~10%); git, mysql, webkit (~15%)

§  TARMA: (family of) new algorithms that address this issue
–  produce results in all cases
–  variants impose requirements on patterns
–  currently evaluating precision: never worse than Rose
+  consistently better than alternative mining approach using SVD

§  just in: new collaborator, KM Dynamic Positioning
–  generalization to other major version mgmt / issue tracking (TFS)
–  “parsable” historical test execution data available (gold standard)

Shared Topics for AWP 2016
§  use software analytics to direct testing efforts

–  where are bugs/issues clustered in the system (over time)
–  components/files/methods with high change rates (code churn)
–  monitor test execution data & continuous integration data (CSC)
–  combine with recommendation results for prioritization

§  investigate techniques that mimic “aging of evidence”
–  architecture of software system is known to change over time
–  parts that used to have a dependency may no longer have one
–  decrease impact that old co-changes have on recommendation

w.r.t. more recent ones

KM related topics for AWP 2016 (1/2)
§  (continued) evaluation of automated recommendations

with respect to KM’s expert opinion (Carl)
–  define protocol for more systematic tracking

–  target new testing efforts in Q1 2016

§  create fine-grained mapping between tests and methods
–  add runtime traceability / dependency tracking for KM-PP
–  hypothesis: path profiling using coverage analysis instrumentation
–  challenge: getting data out of embedded system(s)

§  highly specialized to KM context, Sim researchers no expertise, 3rd party?
§  creates code coverage info that is of interest to KM

–  compare path profiles for number of tests
§  analysis to remove ‘noise’ (startup code, setup/teardown of test fixtures

change
ID

date expert
opinion

HaRT
output

delta added to
testplan + why

removed from
testplan + why

HaRT error
+ why

KM related topics for AWP 2016 (2/2)
§  transfer our approach to Dynamic Positioning (KM-DP)

–  develop adapter to TFS (+ system specific use)
–  evaluate performance in new context

§  compare to KM-PP / CSC / open source systems
–  DP enforces issue linking during commit, and TFS supports

hierarchical organization of tasks / issues (work items)
Ø assess benefits of using of these to combine commits
§  (concrete use of hierarchies is project specific; make abstraction)

–  can historical test execution data establish a gold standard?
§  “could we have recommended tests that failed”

–  can we exploit large level of automated (unit) testing?

CSC related topics for AWP 2016 (1/2)
§  granularity: refine from file level to method level

–  enables more fine-grained (re)testing
–  also of interest to KM: supports ‘chopping up’ large test procedures
–  requires (lightweight) code analysis
–  evaluate benefits/drawbacks of fine-grained recommendations

§  extend prototype to context of developer driven testing
–  developers needs, usage scenarios, and desired integration
–  evaluate recommendation quality in new context (usability/impact)

§  ‘developer satisfaction' interviews
§  compare teams with and without ‘treatment’

–  from recommending tests to recommending change
§  “other developers that changed these methods, also changed …”

CSC related topics for AWP 2016 (2/2)
§  compare to source code analysis based advise

–  CSC currently evaluating Coverity Test Advisor
§  commercial tool for impact analysis/test prioritization

–  compare their ‘advise’ to HaRT recommendations
–  hypothesis: HaRT will find more semantic associations

§  also language independent and finds cross-language dependencies
§  but these are complementary techniques

thanks!

Leon Moonen
leon.moonen@computer.org

https://leonmoonen.com/

